2022-04-19
大阳城游戏(中国)有限公司水利与环境工程学院研究生导师基本信息表 |
||||
1、个人基本信息: |
||||
姓名:屈科 |
性别:男 |
|||
出生年月:1985.06 |
技术职称:副教授 |
|||
毕业院校:纽约市立大学 |
学历(学位):博士 |
|||
所在学科:港口、海岸及近海工程 |
研究方向:海岸工程、海洋工程 |
|||
2、教育背景及工作经历: |
||||
大阳城游戏(中国)有限公司 |
2019.04-至今 |
副教授(特聘教授) |
||
大阳城游戏(中国)有限公司 |
2018.04-2019.03 |
特聘教授 |
||
大阳城游戏(中国)有限公司 |
2017.12-2018.03 |
讲师 |
||
纽约市立大学 |
2012.08-2017.09 |
博士 |
||
纽约市立大学 |
2011.08-2012.07 |
硕士 |
||
西北工业大学 |
2009.09-2013.04 |
硕士 |
||
西北工业大学 |
2005.09-2009.07 |
本科 |
||
3、目前研究领域: |
||||
本人主要从事计算水动力学及环境流体力学研究工作,具体研究方向包括: (1)多尺度海岸动力学研究 (2)潮流能数值普查及应用 (3)风暴及风暴潮数值计算 (4)海岸结构破坏机理研究 (5)海岸植被消波机理研究 (6)浮体复杂水动力学研究 (7)岛礁复杂水动力学计算 (8)岸滩长期演变机制研究 (9)多尺度海岸动力学研究 (10)智慧算法水动力学应用 更多详情可参看:计算流体力学数值实验室 |
||||
4、已完成或承担的主要课题: |
||||
(17)湖南省自然科学优秀青年基金项目, 海岸多尺度流动数值计算方法,立项编号:2021JJ20043,2021/01-2023/12,在研,主持. (16)浙江省河口海岸重点实验室开放基金, 涌潮与海塘相互作用的全尺度数值模拟, 立项编号:ZIHE21009,2021/12-2023/12, 在研,主持. (15)湖南省教育厅科学研究重点项目,极端风-浪-流耦合作用机制下跨海桥梁水动力特性及数值模拟方法研究,立项编号:19A024,2019/09-2022/8,在研,主持. (14)湖湘高层次人才聚集工程-创新人才项目,立项编号:2019RS1049,2019/08-2022/07,在研,主持. (13)国家自然科学基金青年项目,极端波浪条件下跨海桥梁周围水动力特性及多尺度模拟方法研究,立项编号:51809021,2019/01-2021/12,在研, 主持. (12)湖南省自然科学基金青年项目,极端风浪耦合条件下海岸桥梁水动力特性及模拟方法研究,立项编号:2020JJ5582,2020/01-2021/12,已结题, 主持. (11)水沙科学与水灾害防治湖南省重点实验室开放基金项目,极端风浪耦合条件下海岸桥梁水动力特性研究,立项编号:2019SS03, 2019/01-2020/12,已结题,主持. (10)国家自然科学基金重点项目,基于数据挖掘的南海岛礁演变机制及多尺度模拟预测技术研究,立项编号:51839002,2019/01-2023/12,在研, 参加. (9)国家自然科学基金面上项目,黄河源弯曲河流颈口裁弯过程与机理研究,立项编号:51979012,2020/01-2023/12,在研, 参加. (8)国家自然科学基金面上项目,岸礁剖面珊瑚砂输运及其对工程活动响应机制研究,立项编号:51979013,2020/01-2023/12,在研, 参加. (7)国家自然科学基金面上项目,海啸洪水作用下的水沙运动规律及砂质岸滩响应机制研究,立项编号:51979014,2020/01-2023/12,在研, 参加. (6)国家自然科学基金面上项目,风作用下近岸波浪传播变形及其与建筑物相互作用机制,立项编号:51979015,2020/01-2023/12,在研, 参加. (5)技术开发项目,南水北调中线引江补汉工程大宁河一站式提水规划方案实施对受水区水环境影响的数值模型搭建,2019/08-2019/12,已结题, 技术负责人. (4)技术开发项目,基于无人机航测技术的祁阳县城市洪水演进模拟研究,2018/11-2019/12,已结题, 技术负责人. (3)美国国家自然科学基金项目,Prediction of Hydrodynamic Vulnerability of Coastal Bridges to Extreme Storm Surges,立项编号:CMMI-1334551,2013/07-2018/08,已结题, 参加. (2)美国联合技术研究中心/美国交通运输部项目, Prediction system to estimate evacuation time due to coastal flooding under climate change conditions,立项编号:49111-26-22 2011/9-2013/7,已结题,参加. (1)美国新泽西州运输部项目, Evaluation of potential tidal energy and power generation sites along New Jersey coast using computer modeling and field measurement,立项编号:49111-21-21,2010/5-2012/12, 已结题, 参加. |
||||
5、已出版的主要著作: |
||||
Chapter: H. S. Tang, K. Qu, X.G. Wu, and Z.K. Zhang, Domain decomposition for a hybrid fully 3D fluid dynamics and geophysical fluid dynamics modeling system: A numerical experiment on a transient sill flow. Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering, 407-414. Springer, 2016. |
||||
6、已发表的学术论文: |
||||
文章注解:*通讯作者,**课题组研究生 英文期刊论文: 第一作者和通讯作者文章 (25)K. Qu, T.W. Liu**, L. Chen*, Y. Yao, S. Kraatz, J.X. Huang**, G.Y. Lan**, C.B. Jiang. Study on transformation and runup processes of tsunami-like wave over permeable fringing reef using a nonhydrostatic numerical wave model. Ocean Engineering, in press, 2021. (24)B.H. Wen**, K. Qu*, G.Y. Lan**, W.Y. Sun**, Y. Yao, B. Deng, C.B. Jiang. Numerical study on hydrodynamic characteristics of coastal bridge deck under joint action of regular waves and wind. Ocean Engineering, in press, 2021. (23)W.Y. Sun**, K. Qu*, S. Kraatz, G.Y. Lan**, C.B. Jiang. Numerical investigation of the attenuation of tsunami-like waves by a vegetated, sloped beach. Journal of Earthquake and Tsunami, in press, 2021. (21)C.B. Jiang, Y.T. Kang**, K. Qu*, S. Kraatz, B. Deng, E.J. Zhao, Z.Y. Wu, J. Chen. High-resolution numerical survey of potential sites for tidal energy extraction along coastline of China under sea-level-rise condition. Ocean Engineering, 236 (2021):109492. (20)K. Qu, G.Y. Lan**, S. Kraatz, W.Y. Sun*,**, B. Deng, C.B. Jiang. Numerical study on wave attenuation of tsunami-like wave by emergent rigid vegetation. Journal of Earthquake and Tsunami, 2150028(2021):1-28. (19)K. Qu, Y. Wang, H.S. Tang*, A. Agrawal, G. Shields, S.I-Jy Chien, S. Gurung, Y. Imam, I. Chiodi. Extreme storms surge and waves and vulnerability of coastal bridges in new york city metropolitan region: an assessment based on hurricane sandy. Natural Hazards, 105(2021):2697-2734. (18)K. Qu, W.Y. Sun**, X.Y. Ren*, S. Kraatz, C.B. Jiang. Numerical investigation on the hydrodynamic characteristics of coastal bridge decks under the impact of extreme waves. Journal of Coastal Research, 2021, 37 (2): 442-455. (17)K. Qu, B.H. Wen**, X.Y. Ren*, S. Kraatz, W.Y. Sun**, B. Deng, C.B. Jiang. Numerical investigation on hydrodynamic load of coastal bridge deck under joint action of solitary wave and wind. Ocean Engineering, 217(2020):108037. (16)B. Deng, H. Tao, C.B. Jiang, K. Qu*. Numerical investigation on hydrodynamic characteristics of landslide-induced surge waves in narrow river-valley reservoirs. IEEE Access, 8(2020):165285-165297. (15)W.Y. Sun**, K. Qu*, S. Kraatz, B. Deng, C.B. Jiang. Numerical investigation on performance of submerged breakwater to mitigate hydrodynamic loads of coastal bridge deck under solitary wave. Ocean Engineering, 213(2020):107660. (14)K. Qu, W.Y. Sun**, S. Kraatz, B. Deng*, C.B. Jiang. Effects of floating breakwater on hydrodynamic load of low-lying bridge deck under impact of cnoidal wave. Ocean Engineering, 203(2020):107217. (13)Y. Cai, A. Agrawal, K. Qu*, and H.S. Tang. Closure to “Numerical investigation of connection forces of a coastal bridge deck impacted by solitary waves” by Yalong Cai, A. Agrawal, Ke Qu, and H.S. Tang. ASCE-Journal of Bridge Engineering, 25(1), 2020: 07019003. (12)K. Qu, W.Y. Sun**, B. Deng*, S. Kraatz, C.B. Jiang, J. Chen, Z.Y. Wu. Numerical investigation of breaking solitary wave runup on permeable sloped beach using a nonhydrostatic model. Ocean Engineering, 194(2019): 106625. (11)K. Qu, W.Y. Sun**, H.S. Tang, C.B. Jiang, B. Deng*, J. Chen. Numerical study on hydrodynamic loads of real-world tsunami wave at highway bridge deck using a coupled modeling system. Ocean Engineering, 192(2019): 106486. (10)K. Qu, H.S. Tang*, A. Agrawal. Integration of fully 3D fluid dynamics and geophysical fluid dynamics models for multiphysics coastal ocean flows: simulation of local complex free-surface phenomena. Ocean Modelling, 135(2019):14-30. (9)X.Y. Ren, F.J. Xiong, K. Qu*, N. Mizutani. Free surface flow simulation by a viscous numerical cylindrical tank. Algorithms, 12(2019): doi:10.3390/a12050098. (8)K. Qu, H.S. Tang*, A. Agrawal, Y. Cai, C.B. Jiang. Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current. Applied Ocean Research, 75(2018):100-116. (7)E.J. Zhao, L. Mou, K. Qu*, B. Shi, X.Y. Ren, C.B. Jiang. Numerical investigation of pollution transport and environmental improvement measures in a tidal bay based on a Lagrangian particle-tracking model. Water Science and Engineering, 1(2018):23-38. (6)E.J. Zhao, B. Shi, K. Qu*, W.B. Dong, J. Zhang. Experimental and numerical investigation of local scour around submarine piggyback pipeline under steady current. Journal of Ocean University of China, 2(2018):244-256. (5)K. Qu, X.Y. Ren*, S. Kraatz, E.J. Zhao. Numerical analysis of tsunami-like wave impact on horizontal cylinder. Ocean Engineering, 145(2017), 316-333. (4)K. Qu, H. S. Tang*, A. Agrawal, Y. Cai. Hydrodynamic effects of solitary waves impinging a bridge deck with air vents. ASCE-Journal of Bridge Engineering, 22(2017), 04017024. (3)K. Qu, X.Y. Ren*, S. Kraatz. Numerical investigation of tsunami-like wave hydrodynamic characteristics and its comparison with solitary wave. Applied Ocean Research, 63(2017), 36-48. (2)Y. Cai, A. Agrawal, K. Qu*, H.S. Tang. Numerical investigation of connection forces of a coastal bridge deck impacted by solitary waves. ASCE-Journal of Bridge Engineering. 23(2017), 04017108. (1)K. Qu, H. S. Tang*, A. Agrawal, C. B. Jiang, B. Deng. Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows. Journal of Hydrodynamics, 28(2016),994-1002. 非第一作者和通讯作者文章 (9)M.X. Xie, C. Zhang, J.Z. Li, S. Li, Z.W. Yang, H.Q. Zhang, K. Qu. Flow structure and bottom friction of the nonlinear turbulent boundary layer under stormy waves. Coastal Engineering 164(2021), 103811. (8)E.J. Zhao, K. Qu, L. Mu. Numerical study of morphological response of the sandy bed after tsunami-like wave overtopping an impermeable seawall. Ocean Engineering 186(2019), 106076. (7)E.J. Zhao, K. Qu, L. Mu, S. Kraatz, B. Shi. Numerical study on the hydrodynamic characteristics of submarine pipelines under the Impact of real-world tsunami-like waves. Water 11(2019), doi:10.3390/w11020221. (6)Z.Y. Wu, C.B. Jiang, B. Deng, J. Chen, Y.N. Long, K. Qu, X.J. Liu. Numerical investigation of Typhoon Kai-tak (1213) using a mesoscale coupled WRF-ROMS model. Ocean Engineering 175(2019), 1-15. (5)H. S. Tang, K. Qu, G.Q. Chen, S. Kraatz, N. Aboobaker, and C.B. Jiang. Potential sites for tidal power generation: A thorough search at coast of New Jersey, USA. Renewable and Sustainable Energy Reviews 39(2014), 412-425. (4)H. S. Tang, K. Qu, and X. G. Wu, An overset grid method for integration of fully 3D fluid dynamics and geophysics fluid dynamics models to simulate multiphysics coastal ocean flows. Journal of Computational Physics, 273(2014), 548-571. (3)H.S. Tang, S. Kraatz, K. Qu, G.Q. Chen, N. Aboobaker, C.B. Jiang. High-resolution survey of tidal energy towards power generation and influence of sea-level-rise: A case study at coast of New Jersey, USA. Renewable and Sustainable Energy Review 32 (2014) 960-982. (2)H.S. Tang, S.I-Jy Chien, M. Temimi, C.A. Blain, K. Qu, L.H. Zhao, S. Kraatz. Vulnerability of population and transportation infrastructure at east bank of Delaware Bay due to coastal flooding in sea-level rise conditions. Natural Hazards, (2013) DOI 10.1007/s11069-013-0691-1. (1)H.S. Tang, S. Kraatz, X.G. Wu, W. L. Cheng, K. Qu, and J. Polly. Coupling of shallow water and circulation models for prediction of multiphysics coastal flows: Method, implementation, and experiment. Ocean Engineering, 62(2013), 56-67. 英文会议论文: 第一作者和通讯作者文章 (2)K. Qu, H. S. Tang*, A. Agrawal, C. B. Jiang, and B. Deng, Evaluation of SIFOM-FVCOM system for high-fidelity simulation of small-scale coastal ocean flows, Proceedings of 2nd Conf. of Global Chinese Scholars on Hydrodynamics, 877-884, Ed. Wu You-sheng, Dai Shi-qiang, Yan Kai. Wuxi, China. Nov. 11-14, 2016, China Ocean Press. (1)K. Qu, Z. K. Zhang*, S. Niu, C. Gao H. S. Tang, S. J. Luo. Determination of transonic wind tunnel geometry and studies on wall interference by numerical simulation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9-12 Jan 2012. AIAA paper 2012-0982. 非第一作者和通讯作者文章 (6)Y.Q. Tian, Z. K. Zhang*, Q. Zhai, K. Qu, H. S. Tang. Numerical Prediction of the Minimum Height of Roughness Strip for Artificial Transition on Swept Wings. SciTech 2016 AIAA Conference, San Diego, California, 4- 8 Jan. 2016, AIAA paper 2016-1117. (5)W. Zhou, Z. K. Zhang*, K. Qu, H. S. Tang. Numerical Investigation of Transonic Airfoil Buffet Suppression. 53rd AIAA Aerospace Science Conference, Kissimmee, Florida, 5-9 Jan. 2015. AIAA paper 2015-0068. (4)T. T. Chen, Z. K. Zhang*, K. Qu, H. S. Tang. Numerical Study of Fixed Artificial Transition and the Minimum Height of Roughness Strip for it. 21th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 24- 27 Jun. 2013. AIAA paper 2013-3093. (3)W. Zhou, Z. K. Zhang*, K. Qu, H. S. Tang. Numerical Investigation of Shock Oscillation over Airfoils at Transonic Speeds Influenced by Trailing Edge Jet. 21th AIAA Computational Fluid Dynamics Conference, San Diego, CA, 24- 27 Jun. 2013. AIAA paper 2013-2952. (2)H. S. Tang*, Steven I-Jy Chien, M. Temimi, K. Qu, L. H. Zhao, C. A. Blain, and S. Kraatz, Prediction of coastal flooding and evacuation demand estimation considering climate change, Proc. Transportation Research Board 92nd Annual Meeting, 2013. (1)Z. K. Zhang*, C. Gao, K. Qu, H. S. Tang, S. J. Luo. Determination of clustering and switching factors in parabolic grid generation. 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, 9 - 12 Jan 2012. AIAA paper 2012-161. 中文期刊论文: 第一作者和通讯作者文章 (8)蒋昌波,熊玉章**,屈科*,邓斌, 陈杰. 非淹没刚性植物对海啸作用下海堤水动力特性影响数值模拟研究. 海洋工程, 2021(39):1-15. (7)屈科,李凯伦**, 蒋昌波, 邓斌, 刘铁威**, 蓝港芸**. 基于非静压模型类海啸波作用下海堤越浪特性, 广东海洋大学学报, 2021(41):58-69. (6)卢坤**, 屈科*, 姚宇, 孙唯一**, 蒋昌波. 基于类海啸波型的岛礁水动力特性数值模拟研究, 海洋通报, 2021(40):121-132. (5)刘铁威**, 屈科*, 黄竞萱**, 蒋昌波. 孤立波在透水岸礁上水动力特性数值模拟研究, 水动力学研究与进展(A辑), 2021(36):180-191. (4)蒋昌波, 徐进**, 屈科*. 双自由度子母管线涡激振动数值研究, 哈尔滨工程学报, 2021(42):729-737. (3)蒋昌波, 徐进**, 邓斌, 陈杰, 屈科*. 沿程非均匀分布植物区对海啸波消减的数值研究, 海洋工程, 38(3), 2020,1-11. (2)蒋昌波, 徐进**, 邓斌, 陈杰, 屈科*. 基于非静压模型的非淹没刚性植物消波特性数值模拟研究, 海洋通报, 38(2019):591-600. (1)屈科, 张正科*, 高超, 牛嵩. 用数值模拟方法确定跨音速风洞几何参数. 科学技术与工程, 28(2011): 6915-6921. 非第一作者和通讯作者文章 (10)易振宇**,蒋昌波*, 屈科,邓斌,陈杰. 聚焦波浪在浅堤上传播变形高精度数值模拟研究, 海洋工程, 2021,39(01):32-42. (9)段自豪, 陈杰, 蒋昌波, 邓斌, 隆院男, 伍志元, 屈科. 非恒定流作用下的推移质泥沙输移实验研究, 中国科学:技术科学, 49(2019):1372-1382. (8)彭浩, 陈杰, 蒋昌波, 何飞, 隆院男, 屈科, 邓斌, 伍志元. 单株和簇状植物分布方式对消波的影响试验, 水利水电科技进展, 39(2019):27-34. (7)彭浩, 陈杰, 蒋昌波, 何飞, 邓斌, 屈科, 隆院男, 伍志元. 刚性植物分布方式对海啸波消减影响实验研究,海洋与湖沼, 49(2019):1159-1168. (6)彭浩, 陈杰, 蒋昌波,何飞, 隆院男, 屈科, 邓斌, 伍志元. 规则波作用下簇状沉水植物群消浪特性研究,中国海洋大学学报, 48(2018): 1-10. (5)田永强, 张正科, 屈科, 翟琪. 后掠机翼人工转捩最佳粗糙带高度数值预测, 航空学报, 2(2016): 461-474. (EI) (4)周伟, 张正科, 屈科, 翟琪. 开缝空腔抑制翼型跨声速抖振的数值模拟. 航空学报, 2(2016):451-460. (3)周伟, 张正科, 屈科, 高超. 后缘射流对跨音速翼型激波振荡影响的数值模拟. 弹箭与制导学报, 1(2013): 135-137. (2)成婷婷, 张正科, 屈科. 用转捩模型预测转捩及确定最佳粗糙带高度. 航空计算技术, 5(2012): 75-79. (1)周伟,张正科, 屈科, 高超. 翼型阻力计算方法的数值模拟研究. 科学技术与工程, 33(2011): 8229-8237. |
||||
7、所获学术荣誉及学术影响: |
||||
(3)“湖南省自然科学优秀青年基金项目”,2021年7月. (2)“湖湘高层次人才聚集工程-创新人才”,2019年8月. (1)“湖南省省级人才计划”,2018年3月. |
||||
8、联系邮箱:qukeforjc@126.com,kqu@csust.edu.cn |